Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness results for the 3D Zakharov-Kuznetsov equation

We prove the local well-posedness of the three-dimensional Zakharov-Kuznetsov equation ∂tu+∆∂xu+u∂xu = 0 in the Sobolev spaces Hs(R3), s > 1, as well as in the Besov space B 2 (R 3). The proof is based on a sharp maximal function estimate in time-weighted spaces.

متن کامل

Well-posedness for the 2d Modified Zakharov-kuznetsov Equation

We prove that the initial value problem for the two-dimensional modified ZakharovKuznetsov equation is locally well-posed for data in H(R), s > 3/4. Even though the critical space for this equation is L(R) we prove that well-posedness is not possible in such space. Global well-posedness and a sharp maximal function estimate are also established.

متن کامل

Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation

We show that the initial value problem associated to the dispersive generalized Benjamin-Ono-Zakharov-Kuznetsov equation ut −D α xux + uxyy = uux, (t, x, y) ∈ R , 1 ≤ α ≤ 2, is locally well-posed in the spaces Es, s > 2 α − 3 4 , endowed with the norm ‖f‖Es = ‖〈|ξ| α + μ〉f̂‖L2(R2). As a consequence, we get the global wellposedness in the energy space E1/2 as soon as α > 8 5 . The proof is based ...

متن کامل

Global well-posedness in the Energy space for the Benjamin-Ono equation on the circle

We prove that the Benjamin-Ono equation is well-posed in H(T). This leads to a global well-posedeness result in H(T) thanks to the energy conservation. Résumé. Nous montrons que l’équation de Benjamin-Ono est bien posée dans H(T). Il découle alors de la conservation de l’énergie que la solution existe pour tout temps dans cette espace.

متن کامل

Exact Travelling Wave Solutions for a Modified Zakharov–Kuznetsov Equation

The modied Zakharov–Kuznetsov (mZK) equation, ut + uux + uxxx + uxyy = 0, (1) represents an anisotropic two-dimensional generalization of the Korteweg–de Vries equation and can be derived in a magnetized plasma for small amplitude Alfvén waves at a critical angle to the undisturbed magnetic field, and has been studied by many authors because of its importance [1–5]. However, Eq. (1) possesses m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2016

ISSN: 1937-1632

DOI: 10.3934/dcdss.2016075